

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-21/0267 of 27 August 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Injection system FIS V Zero for use in masonry

Metal Injection anchors for use in masonry

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

40 pages including 3 annexes which form an integral part of this assessment

EAD 330076-01-0604, Edition 05/2021

European Technical Assessment ETA-21/0267 English translation prepared by DIBt

Page 2 of 40 | 27 August 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z69222.21 8.06.04-43/21

European Technical Assessment ETA-21/0267

Page 3 of 40 | 27 August 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS V Zero for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar fischer FIS V Zero, a perforated sleeve and an anchor rod with hexagon nut and washer or an internal threaded rod. The steel elements are made of zinc coated steel, stainless steel or high corrosion resistant steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to steel failure of a single anchor under tension loading	See Annexes C 1 and C 3
Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm	See Annex C 2 and C 3
Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading, Reduction factor	See Annex C 5, C 7, C 10, C 13, C 15 and C 16
Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading	See Annex C 5, C 7, C 11, C 13 and C 15
Characteristic resistance to brick breakout failure of an anchor group under tension loading	See Annex B 13, B 14, C 4, C 6, C 8, C 9, C 12 and C 14
Characteristic resistance to local brick failure or brick edge failure of an anchor group under shear loading	See Annex B 13, B 14, C 4, C 6, C 8, C 9, C 12 and C 14
Edge distances, spacing, member thickness	See Annex B 2, B 13, C 4, C 6, C 8, C 9, C 12 and C 14
Displacements under tension and shear loading	See Annex C 17
Maximum installation torque	See Annex C 4, C 6, C 8, C 9, C 12 and C 14

Z69222.21 8.06.04-43/21

European Technical Assessment ETA-21/0267

Page 4 of 40 | 27 August 2021

English translation prepared by DIBt

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire under tension and shear loading with and without lever arm, minimum edge distances and spacing	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-01-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

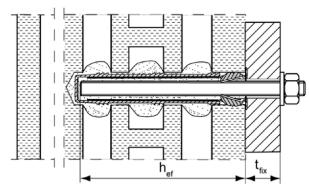
Issued in Berlin on 27 August 2021 by Deutsches Institut für Bautechnik

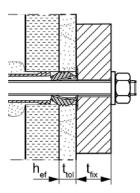
Dipl.-Ing. Beatrix Wittstock

Head of Section

beglaubigt:

Baderschneider

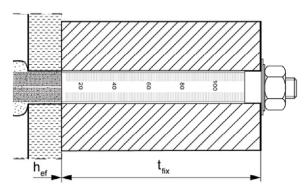

Z69222.21 8.06.04-43/21



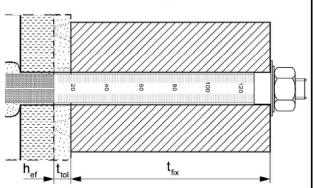
Anchor rods with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Installation with render bridge



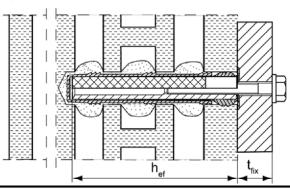
Size of the perforated sleeve:


FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K

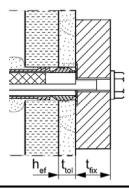
FIS H 20x130 K

Push through installation:

Installation with render bridge


Size of the perforated sleeve:

FIS H 18x130/200 K


FIS H 22x130/200 K

Internal threaded anchor FIS E with perforated sleeve FIS H K; Installation in perforated and solid brick masonry

Pre-positioned installation:

Installation with render bridge

Figures not to scale

hef = effective embedment depth

 t_{fix} = thickness of fixture

ttol = thickness of unbearing layer (e.g. plaster)

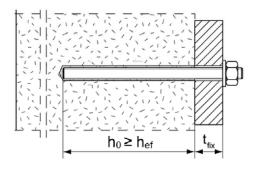
fischer injection system FIS V Zero for masonry

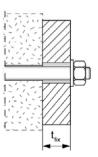
Product description

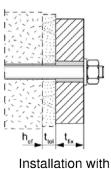
Installation conditions part 1,

Anchor rods and internal threaded anchor with perforated sleeve

Annex A 1

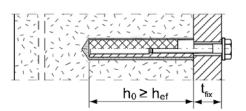

Z78078.21

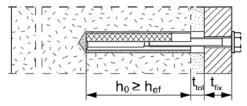

Installation conditions part 2


Anchor rods without perforated sleeve FIS H K; installation in solid brick masonry

Pre-positioned installation:

Push through installation: Annular gap filled with mortar




render bridge

Internal threaded anchors FIS E without perforated sleeve FIS H K; installation in solid brick masonry

Pre-positioned installation:

Installation with render bridge

Figures not to scale

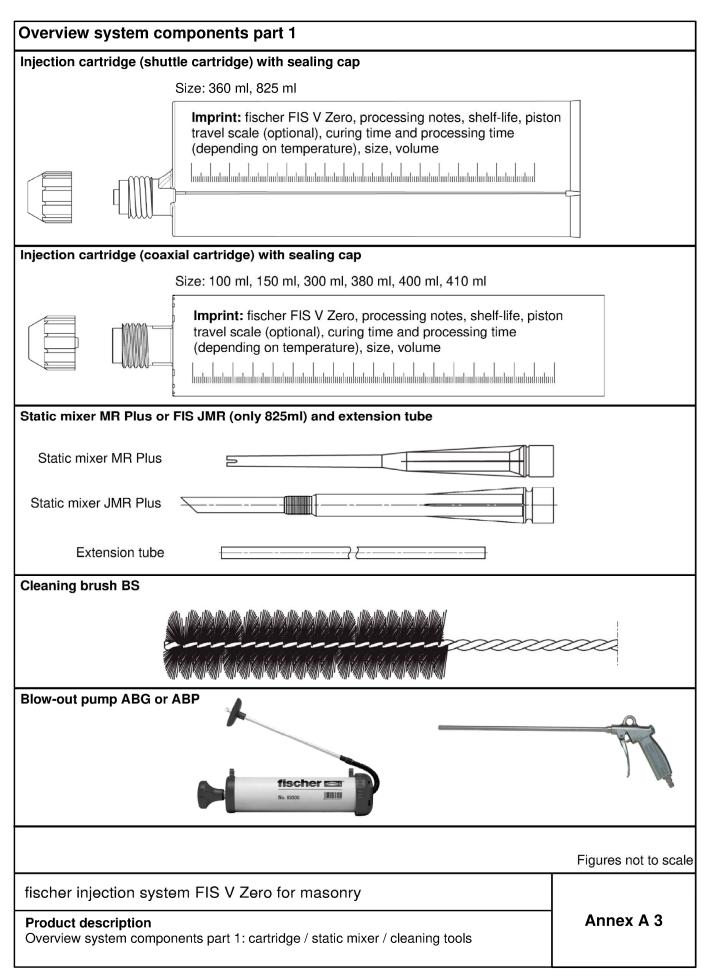
 $h_0 = depth of drill hole$

ttol = thickness of unbearing layer (e.g. plaster)

hef = effective embedment depth

 t_{fix} = thickness of fixture

fischer injection system FIS V Zero for masonry


Product description

Installation conditions part 2,

Anchor rods and internal threaded anchor without perforated sleeve

Annex A 2

Overview system components pa	rt 2		
fischer anchor rod			
	Size:	M8, M10, M12, M16	
Internal threaded anchor FIS E			
	Size:	11x85 M8 15x85 M10 / M12	
Perforated sleeve FIS H K	0'	FIG. 11.40. FO.14	
	Size:	FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 20x85 K	
	Size:	FIS H 16x130 K FIS H 20x130 K	
Perforated sleeve FIS H K (push through	ı installation)		
			Size: FIS H 18x130/200 K FIS H 22x130/200 K
Washer		-	
Hexagon nut			
			Figures not to scale
fischer injection system FIS V Zero	for masonry		
Product description			Annex A 4
Overview system components part 2: Meta	al parts / perforate	ed sleeves	

Part	art Designation Material					
1	Injection cartridge	Mortar, hardener; filler				
		Steel	Stainless steel R	High corrosion-resistant steel HCR		
	Steel grade	zinc plated	acc. to EN 10088-1:2014 Corrosion resistance class CRC III acc. to EN 1993-1-4:2015	acc. to EN 10088-1:2014 Corrosion resistance class CRC V acc. to EN 1993-1-4:2015		
2	Anchor rod	Property class 4.6; 4.8; 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062; 1.4662; 1.4462; EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture}$ elongation	Property class 50 or 80 EN ISO 3506-1:2020 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm ² $A_5 > 8\%$ fracture elongation		
3	Washer ISO 7089:2000	zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014		
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K) or hot-dip galvanised ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 50, 70 or 8 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014		
5	Internal threaded anchor FIS E	Property class 5.8; EN 10277-1:2008-06 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014		
6	Commercial standard screw or threaded rod for internal threaded anchor FIS E	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5µm, ISO 4042:2018 Zn5/An(A2K)	Property class 70 EN ISO 3506-1:2020 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; EN 10088-1:2014	Property class 70 EN ISO 3506-1:2020 1.4565; 1.4529 EN 10088-1:2014		
7	Perforated sleeve and centring sleeve		PP / PE			
	ner injection system f	FIS V Zero for masonry		Annex A 5		

Specifications of intended use (part 1)

Table B1.1:	Overview	installation	and use
I I UDIC DILI.		II ISTAIIATIOTI	and asc

		fischer injed	ction system	FIS V Zero fo	or masonry
Hole drilling with	hammer drill mode	all bricks			
_	n rotary drill mode	all bricks			
Static and qu	asi-static load	all bricks			
Use conditions	dry masonry		all b	ricks	
Installation	Pre-positioned	Anchor rod o internal threaded a (in solid brick mas	anchor	or intern	sleeve with anchor rod al threaded anchor rated and solid brick masonry) FIS H 12x50 K FIS H 12x85 K FIS H 16x85 K FIS H 16x130 K FIS H 20x85 K
-	Push through	Anchor rod (in solid brick mas	Perforated sleeve with (in perforated and s masonry) brick masonry) Size: FIS H 18		FIS H 20x130 K sleeve with anchor rod rated and solid brick masonry) FIS H 18x130/200 K FIS H 22x130/200 K
Installation and use conditions	condition d/d (dry/dry)		all b	l ricks	1131122X130/2001
Installation tempe	, , , , ,	T _i ,	min = -10 °C to	T _{i,max} = +40 °	
	Temperature range Ta	-40 °C to +40 °C	(max. shor	t term temperaterm temperaterm	ature +40 °C
Service temperature	Temperature range Tb	-40 °C to +80 °C		t term temperaterm temperat	
	Temperature range Tc	-40 °C to +120 °C (max. short term temperature +120 °C; max. long term temperature +72 °C)			
Intended use Specifications (p	on system FIS V Z	Cero for masonry			Annex B 1

Specifications of intended use (part 2)

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Solid brick masonry (base material group b), acc. to Annex B 12
- Hollow brick masonry (base material group c), according to Annex B 12
- Minimum thickness of masonry member is hef+30mm
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010
- For other bricks in solid masonry, hollow or perforated masonry the characteristic resistance of the anchor may be determined by job site tests according to EOTA Technical Report TR 053:2016-04 under consideration of the β-factor according to Annex C 16, Table C16.1

Note (only applies to solid bricks):

The characteristic resistance is also valid for larger brick sizes, higher mean compressive strength and higher mean gross dry density of the masonry unit.

Temperature Range:

- Ta: from -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- **Tb:** from -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- Tc: from -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- For all other conditions according to EN 1993-1-4:2015 corresponding to corrosion resistance classes to Annex A 5, Table A5.1.

fischer injection system FIS V Zero for masonry

Intended use
Specifications (part 2)

Annex B 2

Specifications of intended use (part 2 continued)

Design:

• The anchorages have to be designed in accordance with EOTA Technical Report TR 054:2021-05, Design method A under the responsibility of an engineer experienced in anchorages and masonry work. Applies to all bricks, if no other values are specified:

$$N_{Rk} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,p,c}$$

$$V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$$

For the Calculation of pulling out a brick under tension load $N_{Rk,pb}$ or pushing out a brick under shear load $V_{Rk,pb}$ see EOTA Technical Report TR 054:2021-05.

NRk,s, VRk,s and MORk,s see annex C1-C3

Factors for job site tests and displacements see Annex C16

Verifiable calculation notes and drawings have to be prepared taking account the relevant masonry in the
region of the anchorage, the loads to be transmitted and their transmission to the supports of the
structure. The position of the anchor is indicated on the design drawings.

Installation:

- Condition d/d: Installation and use in structures subject to dry, internal conditions
- Hole drilling see Annex B1.1
- · In case of aborted hole: The hole shall be filled with mortar
- Bridging of unbearing layer (e.g. plaster) at perforated brick masonry see Annex B 6, Table B6.1
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or anchor rods (including nut and washer) must comply with the appropriate material and property class of the fischer internal threaded anchor FIS E.
- Minimum curing time see Annex B 8, Table B8.2
- Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

Material dimensions and mechanical properties of the metal parts according to the specifications are given in Annex A 5, Table 5.1

Conformation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents shall be stored

Marking of the anchor rod with the effective embedment depth. This may be done by the manufacturer of the rod or by a person on job site

fischer injection system FIS V Zero for masonry	
Intended use Specifications (part 2 continued)	Annex B 3

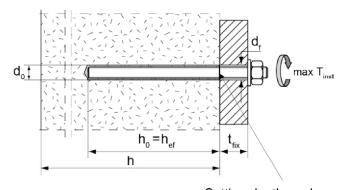
Table B4.1:	Installation parameters for anchor rods in solid bricks without perforated
	sleeves

Anchor rod Thread		М8	M10	M12	M16	
Nominal drill hole diame	eter	d₀ [mm]	10 12 14 18			18
	Effective embedment depth hef,min [mm]		50			
$h_{ef}^{1)}$ in solid brick (depth of drill hole $h_0 = h$	n _{ef}) h	_{ef,max} [mm]	h-30, ≤200			
Diameter of clearance	pre-positioned installation	d _f ≤[mm]	9	12	14	18
hole in the fixture	push through installation	d _f ≤[mm]	11	14	16	20
Diameter of cleaning br	ush	d _b ≥[mm]	m] see Table B8.1			
Maximum installation to	rque max	T _{inst} [Nm]	m] see parameters of brick Annex C			

¹⁾ $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible.

Marking (on random place) fischer anchor rod:

Steel zinc plated PC ¹⁾ 8.8	• or +	Steel hot-dip galvanised PC1) 8.8	•
High corrosion resistant steel HCR PC1) 50	•	High corrosion resistant steel HCR PC1) 70	_
High corrosion resistant steel HCR PC1) 80	(Stainless steel R property class 50	~
Stainless steel R property class 80	*		


Alternatively: Colour coding according to DIN 976-1: 2016;

property class 4.6 marking according to EN ISO 898-1:2013

1) PC = property class

Installation conditions:

Anchor rod

Setting depth mark

Figures not to scale

fischer injection system FIS V Zero for masonry

Intended use
Installation parameters for anchor rods without perforated sleeve

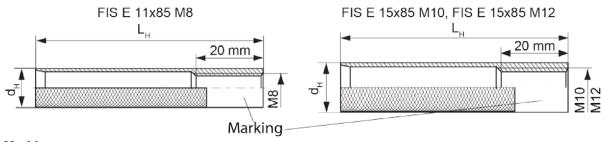
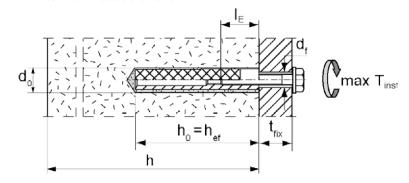

Annex B 4

Table B5.1: Installation parameters for internal threaded anchors FIS E in solid bricks without perforated sleeves

Internal threaded anchor FIS I	E	11x85 M8	15x85 M10	15x85 M12
Diameter of anchor	d _H [mm]	11 15		
Nominal drill hole diameter	d₀ [mm]	14	1	8
Length of anchor	L _H [mm]	85		
Effective embedment depth	$h_0 = h_{ef}[mm]$	85		
Diameter of cleaning brush	d _b ≥[mm]	see Table B8.1		
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C		
Diameter of clearance hole in the fixture	d _f [mm]	9	12	14
Caraw in donth	I _{E,min} [mm]	8	10	12
Screw-in depth	I _{E.max} [mm]		60	

fischer Internal threaded anchor FIS E



Marking:

Size, e.g. M8, Stainless steel: R, e.g. M8 R, High corrosion-resistant steel: HCR, e.g. M8 HCR

Installation conditions:

Internal threaded anchor

Figures not to scale

fischer injection system FIS V Zero for masonry	
Intended use Installation parameters for internal threaded rods FIS E without perforated sleeve	Annex B 5

Table B6.1: Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeves (pre-positioned installation)

perforated sleeve FIS H K		12x50	12x85 ²⁾	16x85	16x130 ²⁾	20x85	20x130 ²⁾
Nominal drill hole diameter d ₀ = D _{sleeve,nom}	d₀ [mm]	12		16		20	
Depth of drill hole	h₀ [mm]	55	90	90	135	90	135
Effective and advanced denth	h _{ef,min} [mm]	50	65	85	110	85	110
Effective embedment depth	h _{ef,max} [mm]	50	85	85	130	85	130
Size of threaded rod	[-]	M	18	M8 an	d M10	M12 a	nd M16
Size of internal threaded anche	-	-	11x85	-	15x85	-	
Diameter of cleaning brush 1)	see Table B8.1						
Maximum installation torque	see parameters of brick Annex C						

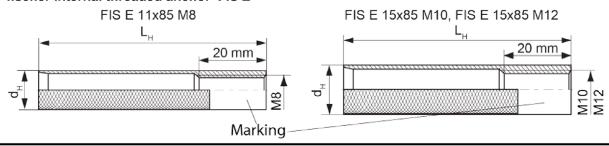
¹⁾ Only for solid areas in hollow bricks and solid bricks.

Perforated sleeve

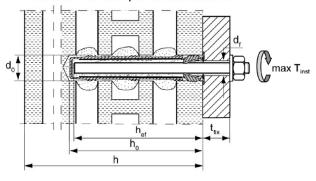
FIS H 12x50 K; FIS H 12x85 K; FIS H 16x85 K; FIS H 16x130 K;

FIS H 20x85 K; FIS H 20x130 K

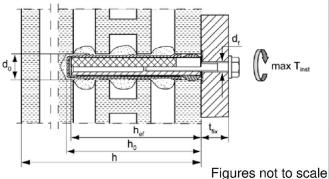
Marking:


Size D_{sleeve}, nom x L_{sleeve}

(e.g.: 16x85)



fischer Internal threaded anchor FIS E



Installation conditions:

Anchor rod with perforated sleeve

Internal threaded anchor with perforated sleeve

fischer injection system FIS V Zero for masonry

Intended use

Installation parameters for anchor rods and internal threaded anchors FIS E with perforated sleeve (pre-positioned installation)

Annex B 6

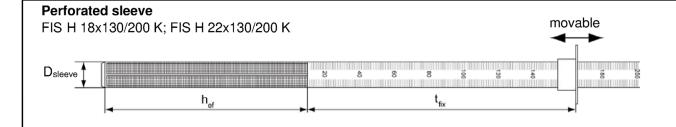
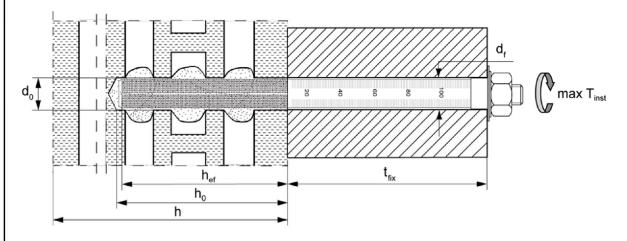

²⁾ Bridging of unbearing layer (e.g. plaster) is possible. When reducing the effective embedment depth hef, min, the values of the next shorter perforated sleeve of the same diameter must be used. The smaller value of charastereristic resistance must be taken.

Table B7.1: Installation parameters for anchor rods with perforated sleeves (push through installation)


Perforated sleeve FIS H K		18x13	22x130/200			
Nominal sleeve diameter	D _{sleeve,nom} [mm]	1	20			
Nominal drill hole diameter	d₀ [mm]	1	22			
Depth of drill hole	h₀ [mm]	135				
Effective embedment depth	h _{ef} [mm]	≥130				
Diameter of cleaning brush 1)	d _b ≥ [mm]	see Table B8.1				
Size of threaded rod	[-]	M10	M16			
Maximum installation torque	max T _{inst} [Nm]	see parameters of brick Annex C				
Thickness of fixture	t _{fix,max} [mm]	200				

¹⁾ Only for solid areas in hollow bricks and solid bricks.

Installation conditions:

Anchor rod with perforated sleeve

Figures not to scale

fischer injection system FIS V Zero for masonry

Intended use
Installation parameters for anchor rods with perforated sleeves
(push through installation)

Annex B 7

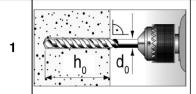
Table B8.1: Parameters of the cleaning brush BS (steel brush with steel bristles)										
The size of the cleaning brush refers to the drill hole diameter										
Nominal drill hole diameter	d₀ [mm]	10	12	14	16	18	20	22		
Steel brush diameter	d _b [mm]	11	14	16	20	20	25	25		

Only for solid areas in hollow bricks and solid bricks

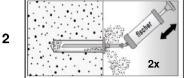
Table B8.2: Maximum processing times and minimum curing times
(During the curing time of the mortar the temperature of the anchoring base may not fall below the listed minimum temperature)

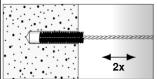
Temperature at anchoring base	Maximum processing time twork	Minimum curing time t _{cure}			
[°C]	FIS V Zero	FIS V Zero			
-10 to -5 1)	6 h	72 h			
> -5 to 0 1)	2 h	24 h			
> 0 to 5 ¹⁾	45 min	12 h			
> 5 to 10	20 min	6 h			
> 10 to 15	8 min	3 h			
> 15 to 20	5 min	2 h			
> 20 to 25	3 min	1 h			
> 25 to 30	2 min	45 min			
> 30 to 40	1 min	30 min			

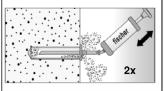
¹⁾ Minimum cartridge temperature +5°C

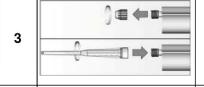

Figures not to scale

fischer injection system FIS V Zero for masonry	
Intended use Parameters of the cleaning brush (steel brush) Processing time and curing time	Annex B 8

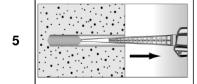


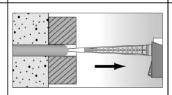

Installation instruction part 1

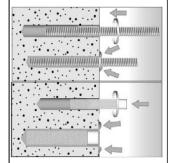

Installation in solid brick without perforated sleeve


Drill the hole (drilling method see Annex C of the respective brick) depth of drill hole **h**₀ and nominal drill hole diameter **d**₀ see **Table B4.1**; **B5.1**

Blow out the drill hole twice. Brush twice and blow out twice again.


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)


Place the cartridge into a suitable dispenser


Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

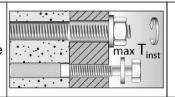
Fill approximetly 2/3 of the drill hole with mortar beginning from the bottom of the hole¹⁾. Avoid bubbles.

For push through installation fill the annular gap with mortar.

Only use clean and oil-free metal parts.

Mark the setting depth.

Insert the anchor rod or internal threaded anchor FIS E by hand.


Recommendation:

Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy.

When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole.

Do not touch. Minimum curing time see Table **B8.2**

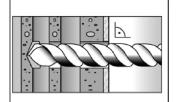
Mounting the fixture. max T_{inst} see parameter of brick.

fischer injection system FIS V Zero for masonry

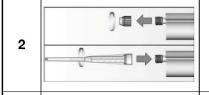
Intended use

6

Installation instruction part 1
Installation in solid brick without perforated sleeve


Annex B 9

¹⁾ Exact volume of mortar see manufacturer's specifications

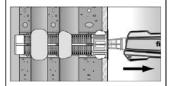

Installation instruction part 2

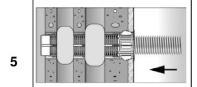
Installation in perforated or solid brick with perforated sleeve (pre-positioned installation)

Drill the hole (drilling method see Annex C of the respective brick). depth of drill hole **h**₀ and nominal drill hole diameter **d**₀ see **Table B6.1**

When install perforated sleeves in solid bricks or solid areas of hollow bricks, also clean the hole by blowing out and brushing.

Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)


Place the cartridge into a suitable dispenser.


Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

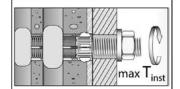
Insert the perforated sleeve flush with the surface of the masonry or plaster.


Fill the perforated sleeve completely with mortar beginning from the bottom of the hole. 1)

Only use clean and oil-free metal parts.

Mark the setting depth.

Insert the anchor rod or the internal threaded anchor FIS E by hand.



Rotation back and forth of the anchor rod or internal threaded anchor FIS E makes pushing easy until reaching the setting depth mark (anchor rod) or flush with the surface (internal threaded anchor).

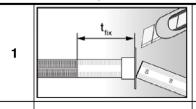
Do not touch. Minimum curing time see Table **B8.2**

Mounting the fixture. max T_{inst} see parameter of brick.

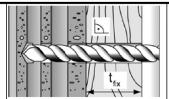
fischer injection system FIS V Zero for masonry

Intended use

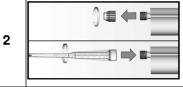
Installation instruction part 2


Installation in perforated or solid brick with perforated sleeve (pre-positioned installation)

¹⁾ Exact volume of mortar see manufacturer's specification.

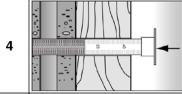


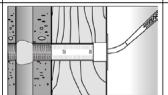
Installation instruction part 3

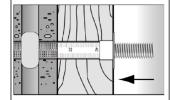

Installation in perforated or solid brick with perforated sleeve (push through installation)

Push the movable stop up to the correct thickness of fixture and cut the overlap.

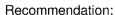
Drill the hole through the fixture. Depth of drill hole $(h_0 + t_{fix})$ and nominal drill hole diameter d_0 see **Table B7.1**


Remove the sealing cap. Screw on the static mixer. (the spiral in the static mixer must be clearly visible)


Place the cartridge into a suitable dispenser.


Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey.

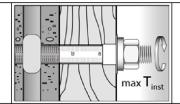
Insert the perforated sleeve flush with the surface of the fixture into the drill hole.


Fill the sleeve with mortar beginning from the bottom of the hole. ¹⁾ For deep drill holes use an extension tube.

Only use clean and oil-free metal parts.

Mark the setting depth.

Insert the anchor rod by hand.


Rotation back and forth of the anchor rod makes pushing easy until reaching the setting depth mark (anchor rod).

5

Do not touch. Minimum curing time see Table **B8.2**

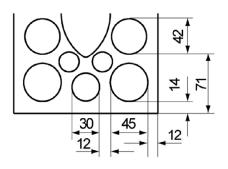
Mounting the fixture. max T_{inst} see parameter of brick.

fischer injection system FIS V Zero for masonry

Intended use

Installation instruction part 3

Installation in perforated or solid brick with perforated sleeve (push through installation)


¹⁾ Exact volume of mortar see manufacturer's specification.

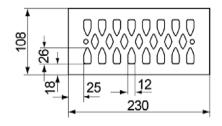
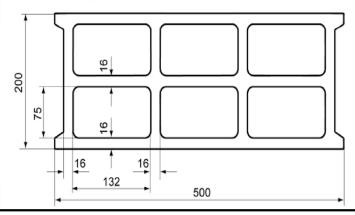


Table B12.1: Overview of assessed bricks									
Kind of masonry	В	rick format [mm]	Mean compressive strength [N/mm²]	Main country of origin	Mean gross dry density ρ [kg/dm³]	Annex			
		So	lid brick Mz						
Solid brick Mz		≥ 230x108x55	36 - 48	Denmark	≥2,0	C4/C5			
Solid calcium silicate	Solid calcium silicate (sand - lime) brick KS / perforated calcium silicate (sand - lime) brick KSL								
Solid calcium silicate brick KS	NF	≥240x115x71	8- 20	Germany	≥2,0	C6/C7			
Perforated calcium silicate brick KSL	3DF	240x175x113	8 - 16	Germany	≥1,6	C8 – C11			
		Vertical pe	erforated brick HL	z					
Vertical perforated brick HLz		230x108x55	6 - 16	Denmark	≥1,6	C12/C13			
	Light	weight aggrega	ite concrete hollo	w block Hbl					
Lightweight aggregate concrete hollow block Hbl		500x200x200	2 - 4	France	≥1,0	C14/C15			

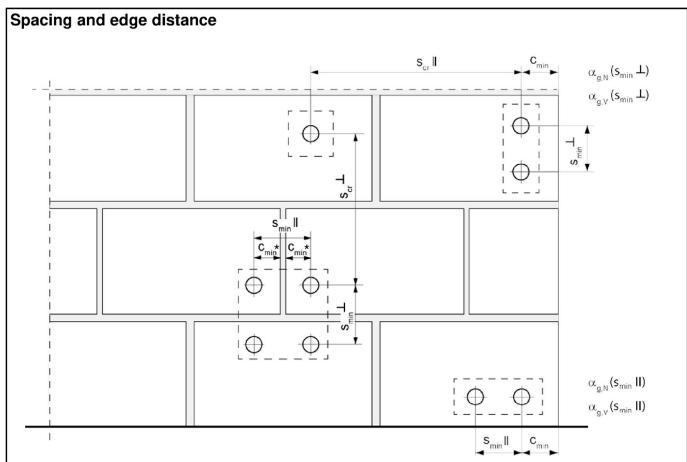

Picture B12.1: Overview dimensions of perforated and hollow bricks

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Vertical perforated brick HLz, EN 771-1:2015; EN 771-2:2015; e.g. KS Wemding according to Annex C 8 e.g. Wienerberger according to Annex C 12

Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015; e.g. Sepa according to Annex C 14

Measures in [mm]

Figures not to scale


fischer injection system FIS V Zero for masonry

Intended use

Overview of assessed bricks

Overview dimensions of perforated and hollow bricks

* Only, if vertical joints are not completely filled with mortar

s_{min} II = Minimum spacing parallel to horizontal joint

 s_{min} = Minimum spacing perpendicular to horizontal joint

s_{cr} II = Characteristic spacing parallel to horizontal joint

 s_{cr} = Characteristic spacing perpendicular to horizontal joint

 $c_{cr} = c_{min}$ = Edge distance

 $\begin{array}{lll} \alpha_{g,N}\left(s_{\text{min}}\,II\right) & = & \text{Group factor for tension load, anchor group parallel to horizontal joint} \\ \alpha_{g,V}\left(s_{\text{min}}\,I\right) & = & \text{Group factor for shear load, anchor group parallel to horizontal joint} \\ \alpha_{g,V}\left(s_{\text{min}}\,I\right) & = & \text{Group factor for tension load, anchor group vertical to horizontal joint} \\ \alpha_{g,V}\left(s_{\text{min}}\,I\right) & = & \text{Group factor for shear load, anchor group vertical to horizontal joint} \\ \end{array}$

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance

Spacing and edge distance (continuation)

For
$$s \ge s_{cr}$$
 $\alpha_g = 2$

For $s_{min} \le s < s_{cr}$ α_g according to installation parameters of brick Annex C

Group of 2 anchors

$$N^g_{Rk} = \alpha_{g,N} \cdot N_{Rk}$$
; $V^g_{Rk,b} = V^g_{Rk,c,II} = V^g_{Rk,c,\perp} = \alpha_{g,V} \cdot V_{Rk}$

Group of 4 anchors

$$N^{g}_{Rk} = \alpha_{g,N} (S_{min}II) \cdot \alpha_{g,N} (S_{min}I) \cdot N_{Rk}$$
;

with N_{Rk} and $\alpha_{g,N}$ depending on s_{min}II or s_{min} \perp acc. to Annex C

with V_{Rk} and $\alpha_{g,V}$ depending on $s_{min}II$ or $s_{min}\bot$ acc. to Annex C

fischer injection system FIS V Zero for masonry

Intended use

Spacing and edge distance (continuation)

Table C1.1: Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Anch	or rod / standard	threaded ro	od		M8 ³⁾	M10 ³⁾	M12	M16		
Chara	acteristic resistar	nce to steel	failure	unde	er tension loadi	ng				
			4.6		15(13)	23(21)	33	63		
S	Ctool zine plated		4.8		15(13)	23(21)	33	63		
stic AR,	Steel zinc plated		5.8		19(17)	29(27)	43	79		
iterii ce I		Property	8.8	FL/NIT	29(27)	47(43)	68	126		
Characteristic resistance N _{Rk,s}	Stainless steel R and	class	50	[kN] -	19	29	43	79		
C S S			70		26	41	59	110		
	resistant steel HCR		80		30	47	68	126		
Partia	al factors 1)									
			4.6			2,0	00			
	Ctaal zina platad		4.8		1,50					
ors	Steel zinc plated		5.8		1,50					
fact ⁵,∾		Property	8.8		1,50					
Partial factors Yms,n	Stainless steel R and	class	50	[-]	2,86					
P	High corrosion		70		1,50 ²⁾ / 1,87					
	resistant steel HCR		80		1,60					

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry

Performances
Characteristic resistance to steel failure of a single anchor under tension loading of fischer anchor rods and standard threaded rods

Annex C 1

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods according to EN ISO 10684:2004+AC:2009

Table C2.1: Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Anch	or rod / standard	threaded re	od		M8 ³⁾	M10 ³⁾	M12	M16		
Characteristic resistance to steel failure under shear loading										
without lever arm										
			4.6		9(8)	14(13)	20	38		
σ	Steel zinc plated		4.8		9(8)	14(13)	20	38		
stic V _R k,	Steel Zinc plated		5.8		11(10)	17(16)	25	47		
teri Ge		Property	8.8	 [kN]	15(13)	23(21)	34	63		
Characteristic esistance V _{RK,s}	Stainless steel R and	class	50	ונאואן	9	15	21	39		
S S	High corrosion resistant steel		70		13	20	30	55		
	HCR		80		15	23	34	63		
with lever arm										
ce	Steel zinc plated	Property class	4.6		15(13)	30(27)	52	133		
itan			4.8		15(13)	30(27)	52	133		
3SiS			5.8	[Nm]	19(16)	37(33)	65	166		
ristic re M ⁰ Rk,s			8.8		30(26)	60(53)	105	266		
Characteristic resistance M ^O Rk,s	Stainless steel R and		50		19	37	65	166		
araci	High corrosion resistant steel		70		26	52	92	232		
์ บั	HCR		80		30	60	105	266		
Parti	al factors 1)									
			4.6			1,€	§7			
	Steel zinc plated		4.8			1,2	25			
tors	Sieer zinc plated		5.8			1,2	25			
al faci Yms,v		Property	8.8] , ,		1,2	25			
Partial factors	Stainless steel R and	class	50	[-]		2,3	38			
፵	High corrosion resistant steel		70			1,25 ²⁾	/ 1,56			
	HCR		80			1,3	33			

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry

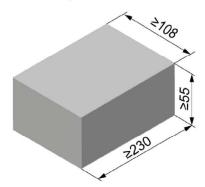
Performances
Characteristic resistance to steel failure of a single anchor under shear loading with and without lever arm of fischer anchor rods and standard threaded rods

Annex C 2

²⁾ Only for fischer FIS A made of high corrosion-resistant steel HCR

³⁾ Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot dip galvanised standard threaded rods (M8 resp. M10) according to EN ISO 10684:2004+AC:2009.

Table C3.1:	Characteristic resistance to steel failure of a single anchor under tension /
	shear loading of internal threaded anchors FIS E


	3110	ar ioaaiii	9 0 111	torrit	ai tiireaded airciid	713 1 10 L	
fischer internal	threac	ded anchor	FIS E		M8	M10	M12
Characteristic r	resista	nce to stee	l failure	unde	er tension loading		
Characteristic		Property class	0.0	ri . N 13	18	29	42
resistance with screw	N _{Rk,}	Property	R	[kN]	26	41	59
With colow		class 70	HCR		26	41	59
Partial factors 1)						
De d'al facteur		Property class	5.8	.,		1,50	
Partial factors	γMs,N	Property	R	[-]		1,87	
		class 70	HCR			1,87	
Characteristic r	esista	nce to stee	l failure	unde	er shear loading		
without lever ar	rm						
Characteristic	W	Property class	5.8	[kN]	9	15	21
resistance with screw	V Rk,s	Property	R		13	20	30
		class 70	HCR		13	20	30
with lever arm							
Characteristic	B. #O	Property class	5.8	FN 1 7	19	37	65
resistance	M ⁰ Rk,s	Property	R	[Nm]	26	52	92
		class 70	HCR		26	52	92
Partial factors 1)						
Partial factors		Property class	5.8			1,25	
raniai iaciors	γMs,V	Property	R	[-]		1,56	
		class 70	HCR			1,56	

¹⁾ In absence of other national regulations

fischer injection system FIS V Zero for masonry	
Performances Characteristic resistance to steel failure of a single anchor under tension / shear loading of internal threaded anchors FIS E	Annex C 3

Solid brick Mz, EN 771-1:2015

Soli	d brick M	z, EN 771-1	1:2015					
Producer		e.g. Wienerberger						
Naminal dimensions	[mm]	length L	width W	height H				
Nominal dimensions	[mm]	≥ 230	≥ 230 ≥ 108					
Mean gross dry density ρ	[kg/dm ³]	≥ 2,0						
Mean compressive strength	[N/mm ²]	36 / 48						
Standard		EN 771-1:2015						

 Table C4.1:
 Installation parameters

Anchor rod			N	18	М	10	М	12	М	16	-		•
Internal threaded and FIS E	chor		-		-		-		-		M8 11x85	M10 15	M12 <85
Anchor rod and internal threaded anchor FIS E without perforated sleeve													
Effective embedment depth	n _{et} mm 50 80 50 80 50 80 50 80 8												
Max. installation max torque	T _{inst}	[Nm]		10						1	10		
General installation	para	meter	S										
Edge distance c _m	nin							10	00				
S	S _{min}							10	00				
	s _{cr} II	[mm]						3 x	h _{ef}				
Spacing s	Smin $oldsymbol{\perp}$			100									
	scr⊥			3 x h _{ef}									
Drilling method													

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C4.2: Group factors

Anchor roo	ds		М8	M10	-		•		
	readed anchor		_	_	_	_	M8	M10	M12
FIS E			-	_	_	-	11x85	15)	x85
	α _{g,N} (s _{min} II)				1,	81			
Group	α _{g,V} (S _{min} II)	r 1			1,	49			
factors	α _{g,N} (S _{min} ⊥)	[-]			1,	74			
	α _{g,} ν (Smin ⊥)				1,	49			

fischer injection system FIS V Zero for masonry	
Performances Solid brick Mz, dimensions, installation parameters	Annex C 4

Solid brick Mz, EN 771-1:2015

Table C5.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16	-		•
Internal threaded					М8	M10	M12
anchor FIS E	_	_	_	-	11x85	15:	(85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)

on ongin is, motamation				•, (po. a.ca.	0	· - · · · ·	•,	
Mean compressive Effective embedment depth hef [mm]									
strength f _b	50	80	50	80	50	80	50	80	85
36 N/mm ²	2,5	3,0	3,0	3,0	3,0	3,0	3,0	4,5	2,5
48 N/mm ²	3,0	3,5	3,5	3,5	3,5	3,5	3,5	5,0	3,0

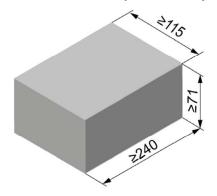
Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C)

on ong is, metamation	a.			٠, ر٠٠٠٠	.po.a.a		5 55,55	- uu	· = · · = • • · ·
Mean compressive		_		Eff	ective e	mbedm	ent dep	th h _{ef} [n	nm]
strength f ь	50	80	50	80	50	80	50	80	85
36 N/mm ²	1,5	2,0	2,0	2,0	2,0	2,0	2,0	3,5	1,5
48 N/mm ²	1,5	2,5	2,5	2,5	2,5	2,5	2,5	4,0	1,5

Table C5.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M8	M10	M12	M16	-		•
Internal threaded					М8	M10	M12
anchor FIS E	_	_	_	-	11x85	15:	(85

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)


									•	
Mean compressive				Eff	ective e	mbedm	ent dep	th hef [n	nm]	
strength f _b	50	80	50	80	50	80	50	80	8	35
36 N/mm ²	2,5	4,5	2,5	4,5	2,5	4,5	2,5	4,5	2,5	2,5
48 N/mm ²	3,0	5,0	3,0	5,0	3,0	5,0	3,0	5,0	3,0	3,0

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry	
Performances Solid brick Mz, Characteristic resistance under tension and shear loading	Annex C 5

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2:2015

Solid calci		te (sand-lin 771-2:2015	ne) brick K	S,
Producer				
Naminal dimensions	[mm]	length L	width W	height H
Nominal dimensions	[mm]	≥ 240	≥ 115	≥ 71
Mean gross dry density	[kg/dm ³]		≥ 2,0	
Mean compressive strength	[N/mm²]		12 / 16 / 20	
Standard		E	N 771-2:20	15

Table C6.1: Installation parameters

Anchor rod			N	18	M	10	М	12	М	16	•	-	•
Internal threa	aded anchor	•	-		_		-			-	M8	M10	M12
FIS E											11x85	15>	(85
Anchor rod a	and internal	threa	ded an	chor F	IS E w	ithout	perfor	ated sl	eeve				
Effective embedment d	lepth h _{ef}	[mm]	50	80	50	80	50	80	50	80	85	8	5
Max. installati torque	on max T _{inst}	[Nm]	8	8				10			8	10	
General insta	allation para	mete	'S										
Edge distance	e C _{min}							10	00				
	Smin II							10	00				
0	s _{cr} II	[mm]		3 x h _{ef}									
Spacing -	Smin ⊥			1						100			
	scr⊥							3 x	h _{ef}				

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C6.2: Group factors

Anchor ro	Anchor rod			M10	M12	M16	-	-		
Internal threaded anchor FIS E			-	-	-	M8 11x85	M10 M12			
	α _{g,N} (S _{min} II)				1,0	67				
Group $\alpha_{g,N} (s_{min} II)$ [-]		,	1,26							
		-] [1,67							
	α _{g,V} (S _{min} ⊥)				2	,0				

fischer injection system FIS V Zero for masonry	
Performances Solid calcium silicate (sand-lime) brick KS, NF, dimensions, installation parameters	Annex C 6

Solid calcium silicate (sand-lime) brick KS, NF, EN 771-2:2015

Table C7.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	M8	M10	M12	M16	-		•	
Internal threaded					М8	M10	M12	
anchor FIS E	_	_		- -	-	11x85	15)	(85

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d (temperature range 24/40°C)

Mean compressive				Eff	ective e	mbedm	ent dep	th hef [m	nm]		
strength f ь	50	80	50	80	50	80	50	80	85	85	
12 N/mm ²	2,0	2,0	2,5	4,5	2,0	4,5	2,0	2,0	2,0		
16 N/mm ²	2,5	2,5	2,5	5,0	2,5	5,0	2,5	2,5	2	,5	
20 N/mm ²	2,5	3,0	3,0	6,0	2,5	6,0	2,5	3,0	2	,5	

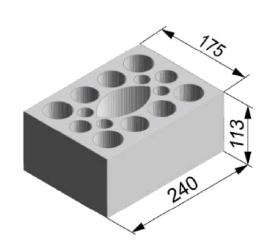
Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d (temperature range 50/80°C and 72/120°C)

Mean compressive				Eff	ective e	mbedm	ent dep	th h _{ef} [n	nm]	
strength f ₀	50	80	50	80	50	80	50	80	85	85
12 N/mm ²	1,5	1,5	1,5	3,0	1,5	3,0	1,5	1,5	1	,5
16 N/mm ²	1,5	1,5	2,0	3,5	1,5	3,5	1,5	1,5	1	,5
20 N/mm ²	2,0	2,0	2,0	4,0	2,0	4,0	2,0	2,0	2	,0

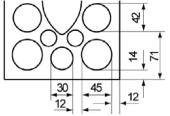
Table C7.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	M8	M10	M12	M16	-		•
Internal threaded					M8	M10	M12
anchor FIS E	_	_	_	-	11x85	15)	(85

Shear resistance $V_{Rk} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d (temperature range 24/40°C, 50/80°C and 72/120°C)


- 1						-	,				·
I	Mean compressive	Effective embedment depth hef [mm]									
l	strength f ь	50	80	50	80	50	80	50	80	85	85
I	12 N/mm²	3,5	3,5	4,5	4,5	3,5	4,0	3,5	4,0	3,5	3,5
I	16 N/mm ²	4,0	4,0	5,0	5,0	4,0	4,5	4,0	4,5	4,0	4,0
I	20 N/mm ²	4,5	4,5	6,0	6,0	4,5	5,0	4,5	5,0	4,5	4,5

Factor for job site tests see annex C16 and displacements see annex C17


fischer injection system FIS V Zero for masonry	
Performances Solid calcium silicate (sand-lime) brick KS, NF, Characteristic resistance under tension and shear loading	Annex C 7

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015										
Producer		e.g	. KS Wemd	ing						
Naminal dimensions	[mm]	length L	width W	height H						
Nominal dimensions	[mm]	240	113							
Mean gross dry density ρ	[kg/dm³]		≥ 1,6							
Mean compressive strength [N/mm²] 6 / 8 / 10 / 12 / 16										
Standard		Е	N 771-2:201	15						

Dimensions see also Annex B 12

 Table C8.1:
 Installation parameters

(Pre-positioned installation with perforated sleeve FIS H K)

Anchor rod			8	M	18	-	•	M8	M10	M8	M10	8 - 8	M12	M16	M12	M16
Internal threaded anchor FIS E		•	•		•		_		-		-	M10 M12 15x85		•		-
ve FIS H k	(12>	5 0	12)	(85		162	(85	5 16x130 20x85 2				20x	130		
internal t	thread	led ar	nchoi	FIS	E wi	th pe	rfora	ated:	sleev	e FIS	нк	-				
max T _{inst}	[Nm]		8		8		8	8	10	8	10	0 10				
tion para	meter	S														
Cmin									1(00						
Smin II									1(00						
Spacing s _{cr} II [mm]			240													
S _{min} ⊥		100														
s _{cr} ⊥			115													
	ve FIS H I	ve FIS H K internal thread max T _{inst} [Nm] tion parameter: Cmin Smin II Scr II [mm] Smin ⊥	ve FIS H K internal threaded as max T _{inst} [Nm] tion parameters C _{min} S _{min} II S _{cr} II S _{min}	ve FIS H K internal threaded anchor max T _{inst} [Nm] 8 tion parameters C _{min} S _{min} II S _{cr} II S _{min} ⊥ S _{min} ⊥	ve FIS H K internal threaded anchor FIS max T _{inst} [Nm] 8 tion parameters C _{min} S _{min} II S _{cr} II S _{min} ⊥	ve FIS H K internal threaded anchor FIS E wi max T _{inst} [Nm] 8 8 tion parameters C _{min} S _{min} II S _{cr} II S _{min} ⊥ S _{min} ⊥	red M 11x ve FIS H K 12x50 12x85 internal threaded anchor FIS E with permax T _{inst} [Nm] 8 8 8 tion parameters C _{min} S _{min} II S _{cr} II [mm] S _{min} ⊥	M8 11x85 12x50 12x85 16x 16x	M8	M8	M8	M8	M8	M8	M8	M8

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C8.2: Group factors

Anchor ro	d	М8	М8	-	М8	M10	M8	M10		-	M12	M16	M12	M16
Internal threaded anchor				М8					M10	M12				
FIS E		•	•	11x85		-			15	15x85		-	•	-
Perforated sleeve FIS H K		12x50	12x85	(85 16x85 16x130 20x85								20x130		
	α _{g,N} (s _{min} II)		1,14											
Group	Group (Smin II)		1,51											
factors	$\frac{\alpha_{g,N} (S_{min} \perp)}{\alpha_{g,N} (S_{min} \perp)} [-]$	1,14												
	α _{g,V} (S _{min} ⊥)	1,54												

fischer injection system FIS V Zero for masonry

Performances

Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters

Annex C 8

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

 Table C9.1:
 Installation parameters

(Push through installation with perforated sleeve FIS H K)

Anchor rod			M10	M12	M16						
Perforated sleev	ve FIS H k	(18x130/200 22x130/200								
Anchor rod with perforated sleeve FIS H K											
Max. installation torque	max T _{inst}	[Nm]	10								
General installation parameters											
Edge distance	Cmin			10	00						
	s _{min} II			10	00						
Chaoina	s _{cr} II	[mm]		24	40						
Spacing Smin 100											
	s _{cr} ⊥			1	15						
Drilling method											

Table C9.2: Group factors

Anchor rod M10 M12 M16					M16					
Perforated	sleeve FIS H K		18x13	0/200	22x130/200					
	α _{g,N} (S _{min} II)		1,14							
Group factors	α _{g,V} (S _{min} II)	r 1	1,51							
factors	$\alpha_{\sf g,N}$ (S _{min} \perp)	[-]	1,14							
	$\alpha_{\sf g,V}$ (Smin \perp)			1,54						

fischer injection system FIS V Zero for masonry	
Performances Perforated calcium silicate (sand-lime) brick KSL, 3DF, dimensions, installation parameters	Annex C 9

12 N/mm²

16 N/mm²

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

Table C10.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Pre-positioned installation)

Single and in	or under	tension	loading (1 16	hosi	LIOTIC	u III	Stalle	וטו	'/		
Anchor rod	M8	M8	-	M8	M10	M8	M10	•		M12 N	/116	M12 M16
Internal threaded			M8					M10	M12			
anchor FIS E	_	-	11x85		•		•	15x	85	-		<u> </u>
Perforated sleeve FIS H K	12x50	12x85	16:	(85		16x	130		20>	k 85		20x130
Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)												
Mean compressive strength $\mathbf{f}_{\mathbf{b}}$												
6 N/mm²	1.	1,2		0.9			2,0 0			0,9		2,0
8 N/mm²	1,	5	1,2			2,5			1,2		2,5	
10 N/mm²	1,	,5	1	5		3	,0		1,	,5		3,0
12 N/mm²	2	,0	1	5		3	,5		1,	,5		3,5
16 N/mm²	2	,5	2	,0		4	,5		2,	,0		4,5
Tension resistance $N_{Rk} = N_{Rk,p}$ strength f_b ; Installation and use											е	
Mean compressive strength $\mathbf{f}_{\mathbf{b}}$												
6 N/mm²	0.	.6	0.	0.75		1,5		0.75			1.5	
8 N/mm²	0,	75	0	9		2	,0		0.	,9		2,0
10 N/mm²	0,	,9	0	,9		2	,5		0,	,9		2,5

1,2

2,5

3,5

1,2

1,5

2,5

3,5

Annex C 10

Table C10.2: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading (Push through installation)

0,9

1,2

Anchor rod	M10	M12	M16					
Perforated sleeve FIS H K	18x130	0/200	22x130/200					
Tension resistance $N_{Rk} = N_{Rk,p}$ = strength f_b ; Installation and use								
Mean compressive strength f_b								
6 N/mm²			2.0					
8 N/mm²			2,5					
10 N/mm²			3,0					
12 N/mm ²			3,5					
_								
16 N/mm ²			4,5					
16 N/mm² Tension resistance N _{Rk} = N _{Rk,p} : strength f _b ; Installation and use			ng on the mean compressive					
Tension resistance N _{Rk} = N _{Rk,p} :			ng on the mean compressive					
Tension resistance $N_{Rk} = N_{Rk,p}$: strength f_b ; Installation and use			ng on the mean compressive					
Tension resistance $N_{Rk} = N_{Rk,p}$ strength f_b ; Installation and use Mean compressive strength f_b			ng on the mean compressive 50/80°C and 72/120°C)					
Tension resistance $N_{Rk} = N_{Rk,p}$: strength f_b ; Installation and use Mean compressive strength f_b $6 N/mm^2$			ng on the mean compressive 50/80°C and 72/120°C) 1,5					
Tension resistance N _{Rk} = N _{Rk,p} = strength f _b ; Installation and use Mean compressive strength f _b 6 N/mm ² 8 N/mm ²			ng on the mean compressive 50/80°C and 72/120°C) 1.5 2,0					

Z78078.21 8.06.04-43/21

Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance under

fischer injection system FIS V Zero for masonry

Performances

tension loading

Perforated calcium silicate (sand-lime) brick KSL, 3DF, EN 771-2:2015

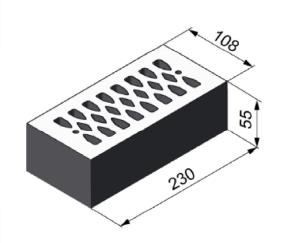
Table C11.1: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Pre-positioned installation)

Anchor rod	М8	M8	-	M8	M10	M8	M10	-		M12	M16	M12	M16
Internal threaded			М8					M10	M12	l .			
anchor FIS E	-	-	11x85		-		•	15	x85		-	'	•
Perforated sleeve FIS H K	12x50	12x85	16:	x85		16x	130	20		x85		20x	130

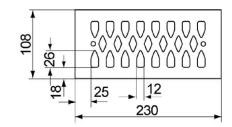
Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

	, ,	, , , , , , , , , , , , , , , , , , ,	,
Mean compressive strength f ₀			
6 N/mm ²	1,5	2,0	3,0
8 N/mm²	2,0	2,5	3,5
10 N/mm ²	2,5	3,0	4,5
12 N/mm²	2,5	3,5	5,0
16 N/mm²	3,5	4,0	6,5

Table C11.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading (Push through installation)


Anchor rod	M10	M12	M16							
Perforated sleeve FIS H K	18x13	0/200	22x130/200							
Shear resistance $V_{Rk} = V_{Rk,c,ll} = V_{Rk,c,l}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)										
Mean compressive strength f_b										
6 N/mm²	2,	0	3,0							
8 N/mm²	2,	5	3,5							
10 N/mm²	3,	0	4,5							
12 N/mm²	3,	5	5,0							
16 N/mm²	4,	0	6,5							

Factor for job site tests see annex C16 and displacements see annex C17


fischer injection system FIS V Zero for masonry	
Performances Perforated calcium silicate (sand-lime) brick KSL, 3DF, Characteristic resistance under shear loading	Annex C 11

Vertical perforated brick HLz, EN 771-1:2015

Vertical perforated brick HLz, EN 771-1:2015										
Producer		e.g. Wienerberger.								
Naminal dimensions	[mm]	length L	width W	height H						
Nominal dimensions	[mm]	230	108	55						
Mean gross dry density ρ	[kg/dm ³]	≥ 1,6								
Mean compressive strength	[N/mm ²]	8 / 10 / 12 / 16								
Standard		El	N 771-1:201	15						

Dimensions see also Annex B 12

Table C12.1: Installation parameters

Anchor rod	М8	M8	-	M8	M10	M8	M10	-	M12	M16	M12	M16
Internal threaded anchor FIS E	-	-	M8 11x85	,	-	9	-	M10 M ²	_	-	-	
Perforated sleeve FIS H K	12x50	12x85	16:	x85		16x	130	2	0x85		20x	130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm]

General installation parameters

General Installat	tion parameter	S
Edge distance	Cmin	100
Chaoina	S _{min} II	100
	S _{cr} II [mm]	230
Spacing	S _{min} ⊥	60
	Scr ⊥	60

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C12.2: Group factors

Anchor ro	od	M8	M8 M8 - M8 M					M10	-	M12	M16	M12	M16
Internal threaded anchor FIS E		_	_	M8				M10 M12		_	·		_
		-	_	11x85	· •		_		15x85		-	-	-
Perforated sleeve FIS H K		12x50	12x85	16x85			16x	130	20:	x85 20x		20x	130
	α _{g,N} (S _{min} II)		1,65										
Group	α _{g,V} (S _{min} II)		1,64										
factors	$\frac{\alpha_{g,N} (S_{min} \perp)}{\alpha_{g,N} (S_{min} \perp)} [-]$		1,65										
	α _{g,V} (S _{min} ⊥)		2,00										

fischer injection system FIS V Zero for masonry

Performances

Vertical perforated brick HLz, dimensions, installation parameters

Annex C 12

Vertical perforated brick HLz, EN 771-1:2015

Table C13.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	М8	M8	-	M8	M10	M8	M10		-	M12	M16	M12	M16
Internal threaded	_		M8			_ _		M10	M12				
anchor FIS E	_	-	11x85		-		-	15	5x85		-		-
Perforated sleeve FIS H K	12x50	12x85	16x85 16x130 20x85			20x	130						

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)

otrongth ib, motanation	u.i.u. u.o.o o	oriantion a	a, (tomporatare rang	0 = 1, 10 0,		
Mean compressive strength f _b						
8 N/mm ²	1,2	1,5	1,5	2,5	1,5	2,5
10 N/mm ²	1,2	2,0	2,0	2,5	2,0	2,5
12 N/mm ²	1,5	2,0	2,0	3,0	2,0	3,0
16 N/mm ²	1,5	2,5	2,5	3,5	2,5	3,5

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C)

Mean compressive strength f _b						
8 N/mm ²	0,6	1,2	1,2	1,5	1,2	1,5
10 N/mm ²	0,75	1,2	1,2	2,0	1,2	2,0
12 N/mm ²	0,75	1,5	1,5	2,0	1,5	2,0
16 N/mm ²	0,9	1,5	1,5	2,5	1,5	2,5

Table C13.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

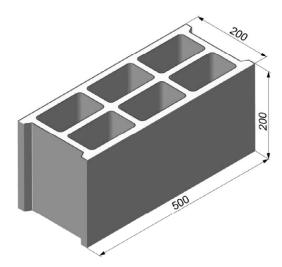
Anchor rod	М8	М8	-	M8	M10	M8	M10		-	M12	M16	M12	M16
Internal threaded	_	_	М8					M10	M12	1	_		
anchor FIS E	-	-	11x85		-	-		15	x85] '	-		-
Perforated sleeve FIS H K	12x50	12x85	162	x85		16x130		20x85			20x	130	

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,ll} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

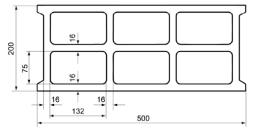
Mean compressive strength f ₀						
8 N/mm ²	2,0	3,5	2,5	3,5	2,5	3,5
10 N/mm ²	2,0	4,0	3,0	4,0	3,0	4,0
12 N/mm ²	2,0	4,0	3,0	4,5	3,0	4,5
16 N/mm ²	2,5	5,0	3,5	5,0	3,5	5,0

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry


Performances

Vertical perforated brick HLz, Characteristic resistance under tension and shear loading


Annex C 13

Lightweight aggregate concrete hollow block Hbl , EN 771-3:2015

Lightweight a	Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015										
Producer			e.g. Sepa								
Naminal dimensions	[mm]	length L	width W	height H							
Nominal dimensions	[mm]	500	200	200							
Mean gross dry density ρ	[kg/dm³]		≥ 1,0								
Mean compressive strength	[N/mm ²]		2/4								
Standard		Е	N 771-1:201	15							

Dimensions see also Annex B 12

Table C14.1: Installation parameters

Anchor rod	-	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded	M8							M10	M12				
anchor FIS E	11x85		-		-		•	15	x85				•
Perforated sleeve FIS H K	16	x85	·	16x	130	18x13	30/200		20:	k85		20x	130

Anchor rod and internal threaded anchor FIS E with perforated sleeve FIS H K

Max. installation torque max T_{inst} [Nm]

General installation parameters

0.01.01.01		
Edge distance	Cmin	100
	S _{min} II	100
Specing	scr II [mm]	500
Spacing	Smin ⊥	100
	s _{cr} ⊥	200

Drilling method

Hole drilling with rotary drill mode or hammer drilling with hard metal hammer drill

Table C14.2: Group factors

Anchor rod			- M8 M10		M8	M10	M10 M12		-		M12	M16	M12	M16	
Internal threaded			М8	_		_		<u> </u>		M10 M12					_
anchor FIS E			11x85	11x85				15x85							
Perforated sleeve FIS H K			16x85			16x	130	18x13	30/ 20 0		202	k 85	35 20x1		130
	α _{g,N} (s _{min} II)							2,	00						
Group	$\alpha_{\text{g,V}}$ (s _{min} II)	F 7						1,	28						
factors	$lpha$ g,N (Smin $oldsymbol{\perp}$)	[-]	1,40												
	αg,ν (Smin 丄)		2,00												

fischer injection system FIS V Zero for masonry

Performances

Lightweight aggregate concrete hollow block Hbl, dimensions, installation parameters

Annex C 14

Lightweight aggregate concrete hollow block Hbl, EN 771-3:2015

Table C15.1: Characteristic resistance to pull-out failure or brick breakout failure of a single anchor under tension loading

Anchor rod	-	M8	M10	M8	M10	M10	M12	-		-		M12	M16	M12	M16
Internal threaded	M8							M10	M12						
anchor FIS E	11x85	·	-	'	-	•	•	15	k 85	•	-	-	•		
Perforated sleeve FIS H K	16:	x85		16x	130	18x13	18x130/200		20x85		0x85		130		

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 24/40°C)

Mean compressive strength f _b		
2 N/mm ²	0,4	0,6
4 N/mm ²	0,5	0,75

Tension resistance $N_{Rk} = N_{Rk,p} = N_{Rk,p,c} = N_{Rk,p,c} = N_{Rk,b,c}$ [kN] depending on the mean compressive strength f_b ; Installation and use condition d/d; (temperature range 50/80°C and 72/120°C)

Mean compressive strength f ₅		
2 N/mm ²	0,3	0,5
4 N/mm ²	0,4	0,6

Table C15.2: Characteristic resistance to local brick failure or brick edge failure of a single anchor under shear loading

Anchor rod	-	M8	M10	M8	M10	M10	M12		-	M12	M16	M12	M16
Internal threaded	M8							M10	M12				
anchor FIS E	11x85			'	-			15:	k 85	•	•	•	•
Perforated sleeve FIS H K	16:	16x85		16x	130	18x13	80/200	20x		k 85		20x	130

Shear resistance $V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,\perp}$ [kN] depending on the mean compressive strength f_b; Installation and use condition d/d; (temperature range 24/40°C, 50/80°C and 72/120°C)

Mean compressive strength f ь	
2 N/mm ²	1,5
4 N/mm ²	2,0

Factor for job site tests see annex C16 and displacements see annex C17

fischer injection system FIS V Zero for masonry	
Performances Lightweight aggregate concrete hollow block Hbl Characteristic resistance under tension and shear loading	Annex C 15

Located Letter 1			
Installation and use conditions		d/d	
emperature range [°C]	24/40	50/80	72/120
M8	0,81	0,47	0,45
M10	0,62	0,49	0,45
M12 / FIS E 11x85	0,62	0,49	0,52
M16 / FIS E 15x85	0,56	0,45	0,59

Material	Size	Effective embedment depth [mm]	N [kN]	δN₀ [mm]	δN∞ [mm]	V [kN]	δV ₀ [mm]	δV∞ [mm]
Solid brick acc. to C4-C5	M8 ·	50	0,57	0,00	0,00	0,71	0,08	0,12
		80	1,00	0,00	0,00	1,71	0,32	0,48
	M10 -	50	0,57	0,00	0,00	0,71	0,18	0,27
		80	1,00	0,01	0,02	1,71	0,50	0,75
	M12 -	50	1,29	0,03	0,06	0,71	0,05	0,08
		80	1,00	0,01	0,02	1,71	0,75	1,13
	MAC	50	1,29	0,03	0,06	0,71	0,35	0,53
	M16	80	1,71	0,04	0,08	1,71	0,20	0,30
(sand-lime) brick acc. to C6-C7		50	0,86	0,03	0,06	1,43	0.00	0,48
	M8 -	80	0,86	0,00	0,00	1,43	0,32	
	M10 -	50	0,86	0,00	0,00	1,43	0,34	0,51
		80	1,71	0,02	0,04	1,43		
	M12 -	50	0,86	0,03	0,06	1,43	0,12	0,18
		80	1,71	0,04	0,08	1,43	0,32	0,48
	M16 -	50	0,86	0,03	0,06	1,43	0,57	0,86
		80	1,14	0,02	0,04	1,43	0,20	0,03
calcium silicate (sand-lime) brick acc. to M12	M8 -	12x50 12x85	0,71	0,01	0,02	1,00	0,16	0,24
	M8	16x85	0,57	0,02	0,04	1,14	0,57	0,86
	M10	16x130	1,29	0,06	0,12	1,14	1,03	1,55
	M12	20x85	0,57	0,03	0,06	1,86	1,15	1,73
	M16	20x130	1,29	0,04	0,08	1,86	1,24	1,86
		12x50	0,43	0,00	0,00	0,71	0,25	0,38
Perforated brick HIz acc. to	M8 -	12x85	0,71	0,00	0,00	1,43	0,61	0,92
	M8 M10	16x85	0,71	0,03	0,06	1,00	0,36	0,54
		16x130	1,00	0,02	0,04	1,43	0,30	0,45
C12-C13	M12	20x85	0,71	0,00	0,00	1,00	0,22	0,33
	M16	20x130	1,00	0,04	0,08	1,43	0,17	0,26
Lightweight	M8 M10	16x85	0,14	0,03	0,06	0,57	1,54	2,31
aggregate		16x130	0,14	0,02	0,04	0,57	1,01	1,52
concrete hollow block	N440	20x85	0,14	0,06	0,12	0,57	1,31	1,97
Hbl acc. to C14-C15	M12 - M16	20x130	0,21	0,04	0,08	0,57	0,82	1,23

fischer injection system FIS V Zero for masonry	
Performances displacements	Annex C 17